Risk Management in Global Supply Chains

Global supply chains today are subject to more risk factors than localized supply chains of the past. These risks include supply disruption, supply delays, demand fluctuations, price fluctua­tions, and exchange rate fluctuations. As was evident in the financial crisis of 2008, underesti­mating risks in global supply chains and not having suitable mitigation strategies in place can result in painful outcomes. For example, contamination at one of the two suppliers of flu vaccine to the United States led to a severe shortage at the beginning of the 2004 flu season. This short­age led to rationing in most states and severe price gouging in some cases. Similarly, the signifi­cant strengthening of the euro in 2008 hurt firms that had most of their supply sources located in Western Europe. In another instance, failure to buffer supply uncertainty with sufficient inven­tory resulted in high costs rather than savings. An automotive component manufacturer had hoped to save $4 million to $5 million a year by sourcing from Asia instead of Mexico. As a result of port congestion in Los Angeles-Long Beach, the company had to charter aircraft to fly the parts in from Asia because it did not have sufficient inventory to cover the delays. A charter that would have cost $20,000 per aircraft from Mexico ended up costing the company $750,000. The anticipated savings turned into a $20 million loss.

It is thus critical for global supply chains to be aware of the relevant risk factors and build in suitable mitigation strategies. Table 6-3 contains a categorization of supply chain risks and their drivers that must be considered during network design.

Good network design can play a significant role in mitigating supply chain risk. For instance, having multiple suppliers mitigates the risk of disruption from any one supply source. An excellent example is the difference in impact on Nokia and Ericsson when a plant owned by Royal Philips Electronics, located in Albuquerque, New Mexico, caught fire in March 2000. Nokia adjusted to the disruption quickly, using several other supply plants in its network. In con­trast, Ericsson had no backup source in its network and was unable to react. Ericsson estimated that it lost revenues of $400 million as a result. Similarly, having flexible capacity mitigates the risks of global demand, price, and exchange rate fluctuations. For example, Hino Trucks uses flexible capacity at its plants to change production levels for different products by shifting work­force among lines. As a result, the company keeps a constant workforce in the plant even though the production at each line varies to best match supply and demand. As illustrated by these examples, designing mitigation strategies into the network significantly improves a supply chain’s ability to deal with risk.

Every mitigation strategy comes at a price, however, and may increase other risks. For example, increasing inventory mitigates the risk of delays but increases the risk of obsolescence. Acquiring multiple suppliers mitigates the risk of disruption but increases costs because each supplier may have difficulty achieving economies of scale. Thus, it is important to develop tai­lored mitigation strategies during network design that achieve a good balance between the amount of risk mitigated and the increase in cost. Some tailored mitigation strategies are outlined in Table 6-4. Most of these strategies are discussed in greater detail later in the book.

Global supply chains should generally use a combination of mitigation strategies designed into the supply chain along with financial strategies to hedge uncovered risks. A global supply chain strategy focused on efficiency and low cost may concentrate global production in a few low-cost countries. Such a supply chain design, however, is vulnerable to the risk of supply dis­ruption along with fluctuations in transportation prices and exchange rates. In such a setting, it is crucial that the firm hedge fuel costs and exchange rates because the supply chain design itself has no built-in mechanisms to deal with these fluctuations. In contrast, a global supply chain designed with excess, flexible capacity allows production to be shifted to whatever location is most effective in a given set of macroeconomic conditions. The ability of such a flexible design to react to fluctuations decreases the need for financial hedges. Operational hedges such as flex­ibility are more complex to execute than financial hedges, but they have the advantage of being reactive because the supply chain can be reconfigured to best react to the macroeconomic state of the world.

It is important to keep in mind that any risk mitigation strategy is not always “in the money.” For example, flexibility built into Honda plants proved effective only when demand for vehicles shifted in an unpredictable manner in 2008. If there had been no fluctuation in demand, the flexibility would have gone unutilized. Flexibility in the form of the intelligent body assem­bly system (IBAS) built by Nissan in the early 1990s almost bankrupted the company because the state of the automotive markets was relatively stable at that time. Similarly, the use of fuel hedges that made billions for Southwest Airlines cost it money toward the end of 2008 when crude oil prices dropped significantly.

It is thus critical that risk mitigation strategies be evaluated rigorously as real options in terms of their expected long-term value before they are implemented. In the following sections, we discuss methodologies that allow for the financial evaluation of risk mitigation strategies designed into a global supply chain.

Flexibility, Chaining, and Containment

Flexibility plays an important role in mitigating different risks and uncertainties faced by a global supply chain. Flexibility can be divided into three broad categories—new product flexibility, mix flexibility, and volume flexibility. New product flexibility refers to a firm’s ability to introduce new products into the market at a rapid rate. New product flexibility is critical in a competitive environment wherein technology is evolving and customer demand is fickle. New product flexi­bility may result from the use of common architectures and product platforms with the goal of providing a large number of distinct models using as few unique platforms as possible. The con­sumer electronics industry has historically followed this approach to introduce a continuous stream of new products. New product flexibility may also result if a fraction of the production capacity is flexible enough to be able to produce any product. This approach has been used in the pharmaceutical industry, in which a fraction of the capacity is very flexible with all new products first manufactured there. Only once the product takes off is it moved to a dedicated capacity with lower variable costs.

Mix flexibility refers to the ability to produce a variety of products within a short period of time. Mix flexibility is critical in an environment in which demand for individual products is small or highly unpredictable, supply of raw materials is uncertain, and technology is evolving rapidly. The consumer electronics industry is a good example for which mix flexibility is essen­tial in production environments, especially as more production has moved to contract manufac­turers. Modular design and common components facilitate mix flexibility. Zara’s European facilities have significant mix flexibility, allowing the company to provide trendy apparel with highly unpredictable demand.

Volume flexibility refers to a firm’s ability to operate profitably at different levels of output. Volume flexibility is critical in cyclical industries. Firms in the automotive industry that lacked volume flexibility were badly hurt in 2008 when demand for automobiles in the United States shrank significantly. The steel industry is an example in which some volume flexibility and con­solidation have helped performance. Prior to 2000, firms had limited volume flexibility and did not adjust production volumes when demand started to fall. The result was a buildup of invento­ries and a significant drop in the price of steel. In the early 2000s, a few large firms consolidated and developed some volume flexibility. As a result, they were able to cut production as demand fell. The result has been less buildup of inventory and smaller drops in price during downturns, followed by a quicker recovery for the steel industry.

Given that some form of flexibility is often used to mitigate risks in global supply chains, it is important to understand the benefits and limitations of this approach. When dealing with demand uncertainty, Jordan and Graves (1995) make the important observation that as flexibility is increased, the marginal benefit derived from the increased flexibility decreases. They suggest operationalizing this idea in the concept of chaining, which is illustrated as follows. Consider a firm that sells four distinct products. A dedicated supply network with no flexibility would have four plants, each dedicated to producing a single product, as shown in Figure 6-1. A fully flexible network configuration would have each plant capable of producing all four products. The pro­duction flexibility of plants is beneficial when demand for each of the four products is unpredict­able. With dedicated plants, the firm is not able to meet demand in excess of plant capacity. With flexible plants, the firm is able to shift excess demand for a product to a plant with excess capac­ity. Jordan and Graves define a chained network with one long chain (limited flexibility), config­ured as shown in Figure 6-1. In a chained configuration, each plant is capable of producing two products with the flexibility organized so that the plants and their products form a chain. Jordan and Graves show that a chained network mitigates the risk of demand fluctuation almost as effec­tively as a fully flexible network. Given the higher cost of full flexibility, the results of Jordan and Graves indicate that chaining is an excellent strategy to lower cost while gaining most of the benefits of flexibility.

The desired length of chains is an important question to be addressed when designing chained networks. When dealing with demand uncertainty, longer chains have the advantage of effectively pooling available capacity to a greater extent. Long chains, however, do have a few disadvantages. The fixed cost of building a single long chain can be higher than the cost of multiple smaller chains. With a single long chain, the effect of any fluctuation ripples to all facilities in the chain, making coordination more difficult across the network. It has also been observed by several researchers that flexibility and chaining are effective when dealing with demand fluctuation but less effective when dealing with supply disruption. In the presence of supply disruption, Lim et al. (2008) have observed that designing smaller chains that contain or limit the impact of a disruption can be more effective than designing a network with one long chain. An example of containment is shown in the last example in Figure 6-1, which shows four plants with the flexibility to produce the four products in the form of two short chains. In this design, any disruption in one of the chains does not affect the other chain. A simple example of containment is hog farming: The farms are large to gain econo­mies of scale, but the hogs are kept separated in small groups to ensure that the risk of disease is contained within a group and does not spread to the entire farm.

Key Point

Appropriate flexibility is an effective approach for a global supply chain to deal with a variety of risks and uncertainties. Whereas some flexibility is valuable, too much flexibility may not be worth the cost. Strategies such as chaining and containment should be used to maximize the benefit from flexibility while keeping costs low.

Source: Chopra Sunil, Meindl Peter (2014), Supply Chain Management: Strategy, Planning, and Operation, Pearson; 6th edition.

One thought on “Risk Management in Global Supply Chains

  1. marizon ilogert says:

    Hi my family member! I wish to say that this post is amazing, nice written and include almost all significant infos. I would like to look more posts like this.

Leave a Reply

Your email address will not be published. Required fields are marked *