Other Sampling Methods

We described simple random sampling as a procedure for sampling from a finite population and discussed the properties of the sampling distributions of X and p when simple random sampling is used. Other methods such as stratified random sampling, cluster sampling, and systematic sampling provide advantages over simple random sampling in some of these situations. In this section we briefly introduce these alternative sampling methods. A more in-depth treatment is provided in Chapter 22, which is located on the website that accom­panies the text.

1. Stratified Random Sampling

In stratified random sampling, the elements in the population are first divided into groups called strata, such that each element in the population belongs to one and only one stratum. The basis for forming the strata, such as department, location, age, industry type, and so on, is at the discretion of the designer of the sample. However, the best results are obtained when the elements within each stratum are as much alike as possible. Figure 7.12 is a diagram of a population divided into H strata.

After the strata are formed, a simple random sample is taken from each stratum. Formulas are available for combining the results for the individual stratum samples into one estimate of the population parameter of interest. The value of stratified random sampling depends on how homogeneous the elements are within the strata. If elements within strata are alike, the strata will have low variances. Thus relatively small sample sizes can be used to obtain good estimates of the strata characteristics. If strata are homogeneous, the stratified random sampling procedure provides results just as precise as those of simple random sampling by using a smaller total sample size.

2. Cluster Sampling

In cluster sampling, the elements in the population are first divided into separate groups called clusters. Each element of the population belongs to one and only one cluster (see Figure 7.13). A simple random sample of the clusters is then taken. All elements within each sampled cluster form the sample. Cluster sampling tends to provide the best results when the elements within the clusters are not alike. In the ideal case, each cluster is a representative small-scale version of the entire population. The value of cluster sampling depends on how representative each cluster is of the entire population. If all clusters are alike in this regard, sampling a small number of clusters will provide good estimates of the population parameters.

One of the primary applications of cluster sampling is area sampling, where clusters are city blocks or other well-defined areas. Cluster sampling generally requires a larger total sample size than either simple random sampling or stratified random sampling. How­ever, it can result in cost savings because of the fact that when an interviewer is sent to a sampled cluster (e.g., a city-block location), many sample observations can be obtained in a relatively short time. Hence, a larger sample size may be obtainable with a significantly lower total cost.

3. Systematic Sampling

In some sampling situations, especially those with large populations, it is time-consuming to select a simple random sample by first finding a random number and then counting or searching through the list of the population until the corresponding element is found. An alternative to simple random sampling is systematic sampling. For example, if a sample size of 50 is desired from a population containing 5000 elements, we will sample one element for every 5000/50 = 100 elements in the population. A systematic sample for this case involves selecting randomly one of the first 100 elements from the population list. Other sample elements are identified by starting with the first sampled element and then selecting every 100th element that follows in the population list. In effect, the sample of 50 is identified by moving systematically through the population and identifying every 100th element after the first randomly selected element. The sample of 50 usually will be easier to identify in this way than it would be if simple random sampling were used. Because the first element selected is a random choice, a systematic sample is usually assumed to have the properties of a simple random sample. This assumption is especially applicable when the list of elements in the population is a random ordering of the elements.

4. Convenience Sampling

The sampling methods discussed thus far are referred to as probability sampling tech­niques. Elements selected from the population have a known probability of being included in the sample. The advantage of probability sampling is that the sampling distribution of the appropriate sample statistic generally can be identified. Formulas such as the ones for simple random sampling presented in this chapter can be used to determine the properties of the sampling distribution. Then the sampling distribution can be used to make probabil­ity statements about the error associated with using the sample results to make inferences about the population.

Convenience sampling is a nonprobability sampling technique. As the name implies, the sample is identified primarily by convenience. Elements are included in the sample without prespecified or known probabilities of being selected. For example, a professor conducting research at a university may use student volunteers to constitute a sample simply because they are readily available and will participate as subjects for little or no cost. Similarly, an inspector may sample a shipment of oranges by selecting oranges haphazardly from among several crates. Labeling each orange and using a probability method of sampling would be impractical. Samples such as wildlife captures and volunteer panels for consumer research are also convenience samples.

Convenience samples have the advantage of relatively easy sample selection and data collection; however, it is impossible to evaluate the “goodness” of the sample in terms of its representativeness of the population. A convenience sample may provide good results or it may not; no statistically justified procedure allows a probability analysis and inference about the quality of the sample results. Sometimes researchers apply statistical methods designed for probability samples to a convenience sample, arguing that the convenience sample can be treated as though it were a probability sample. However, this argument cannot be supported, and we should be cautious in interpreting the results of convenience samples that are used to make inferences about populations.

5. Judgment Sampling

One additional nonprobability sampling technique is judgment sampling. In this ap­proach, the person most knowledgeable on the subject of the study selects elements of the population that he or she feels are most representative of the population. Often this method is a relatively easy way of selecting a sample. For example, a reporter may sample two or three senators, judging that those senators reflect the general opinion of all senators. However, the quality of the sample results depends on the judgment of the person selecting the sample. Again, great caution is warranted in drawing conclusions based on judgment samples used to make inferences about populations.

Source:  Anderson David R., Sweeney Dennis J., Williams Thomas A. (2019), Statistics for Business & Economics, Cengage Learning; 14th edition.

Leave a Reply

Your email address will not be published. Required fields are marked *